
NASA/WVU Software IV & V Facility
Software Research Laboratory
Technical Report Series

NASA-IVV-97-012

WVU-IVV-97-012
WVU-CS-TR-97-015

Generating Test Templates via Automated Theorem Proving

By Mani Prasad Kancherla

National Aeronautics and Space Administration

West Virginia University

NASA-IVV-97-012

NASA IV&V Facility, Fairmont, West Virginia

Generating Test Templates via Automated Theorem Proving

Mani Prasad Kancherla

September 3, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the
World Wide Web site http://www.ivv.nasa.gov/

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

Generating Test Templates via Automated Theorem
Proving

THESIS

Submitted to the Eberly College of Arts and Sciences
Of

West Virginia University

in partial fulfillment of the requirements for

the degree of Master of Science

by
Mani Prasad Kancherla

Department of Statistics and Computer Science

West Virginia University

Approval of Examining Committee

Dr. Steve Easterbrook, Ph.D.

Dr. James D. Mooney, Ph.D.

Date Dr. John R. Callahan, Ph.D. (chair)

ii

Acknowledgements

This work would not have been possible without the support of Dr. Callahan. I gratefully

acknowledge his valuable assisstance and encouragement. I also thank other committee

members Dr. James D. Mooney and Dr. Steve Easterbrook for their insightful comments.

Special thanks are due to Edward Addy, Frank Schneider and other SRL team members for

their suggestions.

I would also like to thank the people at NASA/WVU Research Lab, Concurrent

Engineering Research Center, and the Department of Statistics and Computer Science for

theh" cooperation.

Lastly, but most importantly, I would like to thank my parents, my brother and sister for

their unquestionable support, love and encouragement.

iii

Contents

Generating Test Templates via Automated Theorem Proving .. i
Approval of Examining Committee ... ii
Acknowledgements .. iii
Contents ... iv

Abstract ... v

iv

Contents

Contents .. 0
1. Intrcnluction ... 1

2. Related Work ... 4
3. A Simple Example ... 7

4. Heuristic Approach to Test Template Generation ... 13
4.1 Proof Trees ... 13

4.2 Strategy for generating test templates from invalid proofs .. 19
4.3 Strategy for generating test templates from valid proofs ... 20

4.4 Structuring the Test Templates ... 29
5. A Detailed Example ... 32

5.1 Generating Test Templates for Invalid Properties .. 33

5.2 Generating Test Templates for Valid Properties .. 35
5.2. I Assumptions ... 36

5.2.2 Generating Test Templates .. 40
5.2.3 Finding Errors in Specifications .. 50

6. Discussion ... 57

7. Conclusions ... 62
References ... 65

Appendix A: PVS Primer ... 67

Appendix B: Mtxlified Tri,'mgle Problem Specification ... 69
Appendix C: Complete Triangle Problem Specification .. 71

iv

Abstract

intensive systems.

behaviors. This approach allows for the

generation of tests for potential failure cases.

Testing can be used during the software development process to maintain fidelity between

evolving specifications, program designs, and code implementations. We use a form of

specification-based testing that employs the use of an automated theorem prover to

generate test templates. A similar approach was developed using a model checker on state-

This method applies to systems with functional rather than state-based

use of incomplete specifications to aid in

We illustrate the technique on the cannonical

triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.

GeneratingTestTemplatesviaAutomatedTheoremProving

1. Introduction

The major limitation of conventional testing is that it can only show the presence of errors

but never theh" absencc[1]. This is because we usually have an infinite (or very large) Input

Space and testing over all possible values of input is impractical.

Testing is a process of verifying whether a program does what it is supposed to do. In other

words, a program is correct if it meets its requirements. Typically software requirements

will bc specified in a natural language and can be translated into a set of properties that the

software (or program) should exhibit. We claim that a program is partially correct if it

exhibits all the properties stated in the requirements specification. While it is possible to

specify a program in a formal specification language and vcrify whether the specification

exhibits the required properties or not, its usefulness is limited for the following reasons:

Inconsistencies between the formal specification and tile program: There are a number of

reasons why the actual program and the lbrmal specification can be inconsistent. One

possibility is that the specification was developed at an early stage in the life cycle of the

software and the changes made in the later phases are not reflected in the formal

specification. Hence, proving that the tbrmal specification exhibits a property does not

necessarily mean that the actual program exhibits that property.

GeneratingTestTemplates via Automated Theorem Proving

Partial formal specification/verification: It is usually very expensive (and often

unnecessary) to specify a huge program completely in a formal specification language and

prove its correctness. We can specify only the critical sections in a formal language and

verify the partial specification. Properties exhibited by the partial specification do not

necessarily mean that the program will exhibit them because of the inadequacy in detail.

Non-functional requirements: There could be a number of non-functional requirements

that should be exhibited by the program. For example, there could be performance

constraints on the program. These properties are implementation specific and it is usually

inappropriate to prove that the specification exhibits these properties.

For the above reasons, we not only want to verify the functional correctness of the

specification but we would also want to generate test cases so that we can verify the actual

program lbr correctness. In this thesis, we propose a method of generating test templates

for each of the functional properties specified in the requirements specification. A test

template can be thought of as a set of conditions on the Input Space. Testing the software

for any one particular instance of the template is mininaally necessary to prove that the

actual program exhibits the corresponding property.

The remainder of this thesis is organized as follows: Chapter 2 discusses the related work.

Chapter 3 presents a simple example based on Myers cannonical triangle example that will

demonstrate our approach to test template generation. Chapter 4 describes the strategies for

GenerathagTestTemplatesviaAutomatedTheoremProving

deriving testtemplatesandstructuringtheminto TestTemplateHierarchy(TTH). Chapter

5 providesa detailed examplebasedon the modified triangle specification.Chapter6

presentsapracticalexampleanddiscussestheusefulnessof ourapproachin therealworld.

Chapter7presentsanoverviewof this thesisandconcludeswith thescopefor futurework.

AppendixA presentsan introductionto PrototypeVerification System(PVS).AppendixB

prcsentsthe incorrectPVSmodelfor themodifiedtrianglespecification.Finally, Appendix

C presentsthe con'ectcdmodel for the modifiedtriangleexampleand the generatedtest

templates.

GeneratingTestTemplatesviaAutomatedTheoremProving 4

2. Related Work

Phil Stocks and David Carrington in their paper "A framework for specification based

testing" [2] suggest a method for deriving test templates fi'om Z-specification and provide

a test template fiamework for structuring the tests. They define the Input Space (IS) of an

operation as the space from which input can be drawn, i.e. IS represents type-compatible

input to the operation. The Valid Input Space (VIS) is the subset of IS for which the

operation is defined. They claim that all the tcsts for an opcration must be derived from the

operation's VIS because the specification defines only what happens for input in the VIS.

Once the VIS of an operation is determined, they subdivide the VIS into subsets called

domains by applying testing strategies and heuristics. A template hierarchy is constructed

with the templates as nodes and strategies as edges. After applying all the desired

strategies, each instance of a terminal template in the hierarchy graph is considered

equivalent to all other instances of this template for testing purposes. In their approach it is

not clear how the generated test templates relate to the properties stated in the

requirements. Hence it is not evident whether the generated test templates are sufficient to

test lbr all the properties stated in the requirements.

The formal specification language, Maribila [3], was designed by Computationl Logic, Inc

(CLI) and the Open Group Rescarch Institute (RI) with the goal to make it easy for

GeneratingTestTemplatesviaAutomatedTheoremProving

software engineers to read and write Maribila formal specifications without specific formal

methods expertise. Maribila has a formally defined semantics. It is syntactically and

semantically equivalent to C++ or Java, but has language features that encourage

abstraction. Maribila formal specifications can be used to drive system testing and the

technique is called specification-based evet-trace testing.

In the event-trace testing methodology, the system architecture is formally described as an

abstract program in the lbrmal language Maribila. The Maribila abstract program specifies

that the system will take certain actions, and constrains acceptable orderings of these

actions. The abstract program steps can be viewed as significant events that must take

place in the course of system execution. The abstract program defines a finite state

machine that will accept or reject an event trace. An event trace is a stream of event

occurences. A finite state machine is created for each system interface specified in

Maribila by a prototype tool, acceptor generator. The tool identifies the events suggested

by the specification, and defines a program interface for announcing the events from the

system code base at run time. The programmer instruments the code base to emit the

appropriate event announcements and ensures that the expected events are announced in a

toncot order. The instrumentation also records which stales of the finite state machine

have been visited, giving a mctric for coverage of the test suite.

Daistish [4], a tool developed by Merlin Hughes and David Stotts, creates effective test

drivers for programs in languages that use side effects to implemcnt Abstract Data Types

GeneratingTestTemplatesviaAutomatedTheoremProving 6

(ADTs). The tool performssystematicalgebraictesting.The basic approachis to select

appropriatedatapoints(valuesfor parametersto theoperationscalled in axioms),compute

the right and left sidesof an axiom separately,and thencomparethe results.A correct

implementationshouldproducevaluesfor eachsidethatarcequivalent.

Diastish is a Perlscript which processcsa h_rmal specification of an ADT along with the

code for an object implementing the ADT, to produce a test driver. The specification files

contain axioms and test vectors (sample instantiations of types used by the axioms).

Daistish scans all specification files and code is produced to instantiate each test vector and

evaluate each axiom. The axioms are then called with each possible valid combination of

parameters available li"om instantiations of the test vectors. If an axiom fails, test generator

will output thc axiom name that failed and the names of data points used as parameters.

Otherwise statistics arc collected for each axiom and summarized at completion.

Bruno Dutertre and Victoria Stavridou describe the application of a formal approach to the

specification and analysis of a safety critical system in their work "Formal Requirements

Analysis of an Avionics Control System" [5]. Their work is based on an Air Data

Computer (ADC) that consisted of two channels. A primary channel performs all ADC

functions during normal operation and a backup channel takes over when the primary fails.

The functional requirements were specified and verified using the Prototype Verification

System (PVS).

GeneratingTestTemplatesviaAutomatedTheoremProving

3. A Simple Example

In this section we'll illustrate test template generation with a simple example. Consider the

following specification:

Given three integers representing the three edges of a tt4angle, determine

the t3.7_eof the triangle (i.e. Equilateral, Isosceles o1" Scalene). If all sides

of the triangle are equal then it is Equilateral. If two sides are equal and

the third side is different from them then it is Isosceles. If all sides are

different then it is Scalene." [6]

As the specification clearly states that the 3 integers represent the edges of a triangle, we

don't need to test whether the 3 integers form a valid triangle. Note that it is also implied in

the above specification, that any triangle will be one of the 3 types specified. We'll come

back to this specification in chapter 5 and generalize it to handle inputs that do not form a

triangle.

In thc PVS specification given in Figure 1, we declare x, y, and z as variables of type

POSITIVE INTEGER. We also declared an enumeration type named 'Triangle_type'

having values 'Scalene', 'Isosceles', 'Equilateral' and 'Error'. Note that even though any

triangle will be one of the 3 types Equilateral or Isosceles or Scalene, we added 'Error' in

GeneratingTestTemplatesviaAutomated Theorem Proving

our enumeration type because it is useful in proving certain properties. The function

'Triangle' accepts 3 positive integers as parameters and returns the type of the triangle.

Note that the function 'Triangle' will return "Error" if the triangle is not Equilateral or

Isocelcs or Scalene.

An attempt to prove the property "It is never the case that the triangle is not equilateral or

isosceles or scalene" yields the following two proof goals*:

proof goal 1: Given x, y, and z are integers and y = z, prove that x = z.

proof goal 2: Given x, y, and z are integers and x = z, prove that x = y.

The above proof goals could not be proved since the statements (y = z) => (x = z), (x = 7)

=> (x = y) for any three positive integcrs x, y, and z could not be shown. So we conclude

that the PVS specification shown in Figure 1 will not satisfy the above stated property. We

can generate the following test templates from the above proof goals*:

Test template-A: x, y, and z are positive integers and (x, y, z) form a triangle and

(y = z) and not(x = z)

Test template-B: x, y, and z are positive integers and (x, y, z) form a triangle and

(x = z) and not(x = y)

"Thcrc will be thrcc more prtx_f goals generated by PVS that are automatic_dly proved by file PVS theorem-
prover. Only the two prtx_f goals mentioned here could not be proved automatically.
* The actual slratcgy for generating test templates is described in chapter 4.

Generating Test Templates via Automated Theorem Proving

triangle : THEORY
BEGIN

x, y, z: VAR pos
Triangle_Ope: TYPE = [Scalene, Isosceles, Equilateral Error}

Triangle(x, ._, z): Triangle_t3pe =

IF x = y AND y = z THEN Equilateral

ELSIF x = _.'AND z/= y THEN L_osceles
ELSIF x/= y AND y/= zAND z/= x THEN Scalene
ELSE Error

ENDIF

Con j: CON, lECTURE Triangle(a; 3, z)/= Error

END triangle

Figure 1: Incomplete specification of Triangle problem in PVS

Note that "(x, y, z)form a triangle" means that the three positive integers x, y, and z when

interpreted as representing the lengths of the sides, form a triangle.

These test templates correspond to the cases where the specification (given in Figure 1)

fails to exhibit the property. Note that three integers (when interpreted as representing the

lengths of sides) form a triangle if the sum of any two is greater than the third.

Instances of the template-A consist of all the 3 integer tuples of the form (x, y, y) where x

and y are two different positive integers and (x, y, y) form a triangle, i.e. Instances of

template-A consist of the infinite set

{ (1,2,2), (1,3,3), (1,4,4),...

Generating Test Templates via Automated Theorem Proving 10

(2,1,1), (2,3,3), (2,4,4), ..

o.*,*°,,*,°..*,,,° °.,}

Similarly, the instances of template-B will consist of all the 3 integer tuples of the form (x,

y, x) where x and y arc two different positive integers. Instances of template-B consist of

the infinite set

{ (1,2,1), (1,3,1), (1,4,1), ...

(2,1,2), (2,3,2), (2,4,2)

Note that these two test templates correspond to the case of Isosceles triangles (in both the

cascs we have two equal sides and a different third side). As this is avery simple example,

you can see that in the model (i.e., PVS specification) we did not consider all the possible

cases for Isosceles triangle. All the possible cases of two cqual sides and a different side

would be:

((x = y) AND (y I= z)) OR

((y = z) AND (x/= z)) OR

((x = z) AND (x/= y)).

But we specified only the condition ((x = y) AND (y/= z)) in our model and did not

specify the other two conditions. So our model was incorrect. We generated test templates

corresponding to these two cases. The specification after fixing the above error is given in

Figure 2.

GeneratingTestTemplatesviaAutomatedTheorem Proving 11

The above mentioned property can be easily proved based on the corrected specification.

Now, we can try to prove the other 3 properties:

1. If all sides are equal then Equilateral.

2. If two sides arc equal and third side is different then Isosceles.

3. If no two sides are equal then Scalene.

Since this is a very simplc example and the above properties are trivially true for the model

in Figure 2, the generated test templates will be no more than the specified conditions in

each of the conicctures. Hence, the test templates corresponding to the above 3 properties

will be:

Template-l: x = y AND y = z (x, y, and z are integers)

Template-2: ((x = y) AND (y/= z)) OR ((y = z) AND (x/= z)) OR

((x = z) AND (x/= y)) (x, y, and z are integers)

Template-3: x/= y AND y/= z AND z/= x (x, y, and z are integers)

Generaling Test Templates via Automatcd Theorem Proving 12

triangle : THEORY
BEGIN

x, y, z: VAR pos

Triangle ope: TYPE = {Scalene, Isosceles, Equilateral, Error}

Triangle(x, 3, z): Triangle__pe =
IF x = y AND y = z THEN Equilateral

ELSIE ((x =)9 AND (y /= z)) OR
((y = z) AND (x /= z)) OR

((x = z) AND (x /= y)) THEN Isosceles
ELSIF x/= y AND y/= z AND z/= x THEN Scalene
ELSE Error
ENDIF

conj: CONJECTURE Triangle(a, y, z)/= Error

conjl: CONJECTURE (x = y AND y= z) IMPLIES

Triangle(a, y, z) = Equilateral
conj2: CONJECTURE ((x = 3') AND (y /= z)) OR (0' = z) AND (x /= z)) OR

((x = z) AND (x /=)9) IMPLIES Triangle(x,y,z) = Isosceles
conj3: CONJECTURE (x/= y AND y/= zAND z/= x) IMPLIES

Triangle(a, y z) = Scalene
END triangle

Figure 2: Corrected specification of the 'triangle' problem in PVS

Each of these templates consists of an infinite set of instances. Any one particular instance

of a template is sufficient to prove that the software exhibits a particular property. The

actual procedure for generating test templates from the proof goals is described in the next

chapter.

Generating Test Templates via Automated Theorem Proving 13

4. Heuristic Approach to Test Template Generation

We suggest a new method of testing software based on the formal specification. We used

the Prototype Verification System (PVS) and its in-built theorem prover to derive test

templates corresponding to the properties stated in the requirements. After developing the

PVS specification, we specify the properties stated in the requirements as conjectures.

Using the theorem prover we try to prove that the conjecture is TRUE, i.e. we'll prove that

the property holds for the PVS specification.

4.1 Proof Trees

PVS proof checker provides a collection of proof commands that can be combined to form

proof strategies. Applying proof commands in order to prove a conjecture might yield:

1) another proof goal that needs to be proved in order to prove the original proof goal.

2) more than one proof goal. In which case, the proof is split into branches with sub goals.

Ii1 order to prove the original proof goal we have to prove all the sub-goals.

3) termination of that proof branch in the case where the proof goal is trivially TRUE.

GeneratingTestTemplalesvia Automated Theorem Proviag 14

From the proof commands that are applied to the conjecture a proof tree is constructed

where all the leaves in the proof tree are recognized as TRUE.

Consider the trivial example of specifying the function Division_Result that will return the

type of integer division.

Given two integers x and y, return the t3.,pe of 'x(y'. If 'y = O' the function

should return 'Error', otherwise it shotdd return 'Positive' or 'Negative'

or 'Zero' depending oll the value of "x/y'.

The PVS specification for the above function is given in Figure 3. The function

Division_Result accepts two integer parameters x and y. If 'y = 0' then the function returns

"Error". If 'x = 0' (and y/= 0) the function returns "Zero". If both x and y are positive or

negative then the function returns "Positive" otherwise it returns "Negative".

In the conjecture conjl of Figure 3, we try to prove that the function Division_Result will

not return "Error" if 'y/= 0'. The proof tree corresponding to this conjecture is depicted in

Figure 4. The nodes of the proof tree are numbered and the proof command applied at each

node is also shown.

Generating Test Tcmplales via Automated Theorem Proving 15

examplel : THEORY
BEGIN

a; y: VAR int

Return_type: TYPE = (Positive, Negative, Zero, Error]

% Returns the type ofx/y

Division_Result(a, y): Return_Ope =
IF y = 0 THEN Error
ELSIF x = 0 THEN Zero

ELSIF (x > 0 AND y > O) OR (x < 0 AND y < O) THEN Positive

ELSE Negative
ENDIF

conj I: CONJECTURE not(y = O) IMPLIES Division_Result(:t, y)/= Error

END example1

Figure 3: PVS specification of Division_Result function

Each node of the proof tree is a proof goal. Each proof goal has a sequent consisting of a

sequence of formulas called antecedents and a sequence of formulas called consequents. In

PVS, such a sequent is displayed as _

{-1} A1

{-Z}A2

1-31A3

* The ,'mtecedents ,are assigned negative numbers ,'rod fl_e consequents ,are assigned positive numbers. The
braces surrounding the number indicate flint the formula has changed from fl_e parent sequent. The square
brackets surrounding fl_cnumber indicate flint the formula is repeated from fl_eparent sequent.

Generating Test Templates via Automated Theorem Proving 16

I

{ll m

{21 B2

{3} B3

I

I

The sequent formt, las Ai are the antecedents and the Bj are the consequents. The

interpretation of a sequent is that the conjunction of antecedents should imply the

disjunction of the consequents, i.e.

Generating Test Tcmplalcs via Automated Theorem Proving 17

(1 r_r_n)

t

(2 _k_len!)

!

F
i
i

(3 f1_tt e**)

i

(4 expand "Dx__sxon_llesalt")

Z
i

(5 Ii:[t- iI)

(6 _lit)

assert) (8 f-/_tt e_)

i
I

I
(9 s_lit)

(10 assert) (11 fl'attmn)

!

112 split)

113 a_sertO[4 _e_rl

Figure 4: Proof tree for conjl of Division_Result

Generating Test Templates via Automated Theorem Proving 18

(AI ^ A2 ^ A3 ^ ...) --> (B1 V B2 V B3 V ...)

For example in the proof tree (shown in Figure 4) for conj I of Division_Result at node 12

we have the following sequent

{-1} NOT((x!I > 0 AND y!l > 0) OR (x!l < 0 AND y!l < 0)) AND (Negative = Error)

[ll x!l =0

[2] y!l = 0

[31 (y!l =0)

i.e., we have to prove that the following implication is TRUE (shown after replacing the

skolcmizcd variables with actual variables)

NOT((x > 0 AND y > 0) OR (x < 0 AND y < 0)) AND (Negative = Error) --> (x = 0) V (y = 0)

The above implication is TRUE since the condition (Negative = Error) is Flase on the left-

hand side of the implication.

Note that the root of the proof tree is a sequent with the conjecture that we are trying to

prove as the consequent and with no antecedents. PVS proof steps build a proof tree by

adding subtrees to leaf nodes.

GeneratingTestTemplatesvia Automated Theorem Proving 19

We claim that it is possible to generate test templates based on the proof tree that would

test Ibr the property corresponding to the conjecture we proved (or failed to prove). While

generating test templates we need to consider the two cases:

1) when we fail to prove that a property is exhibited by the model

2) when we succeed in proving that the model exhibits a property.

4.2 Strategy for generating test templates from invalid proofs

If we fail to prove that a property is exhibited by the model, then there exist one or more

proof goals in the proof tree that could not be proved to be TRUE, i.e. there are one or

more sequents that are false." We note that the implication of the form

(AI ^ A2 ^ A3 ^ ...) --> (B1VB2 VB3 V...)

will be FALSE only when the left-hand side of the implication is TRUE and the right hand

side of the implication is FALSE. Hence we have the condition

(A1 ^ A2 ^ A3 ^ ...) ^ NOT(BI VB2 V B3 V...)

Note flint tile failure to prove a property does not necessarily mean timt one or more sequents are false. It
could also happen wheu we don't have enough information in the m_xlel to prove the conjecture. We are not
interested in timt case.

Generating Test Templates via Automated Theorem Proving 20

which will be the test template when we fail to prove the proof goal.

4.3 Strategy for generating test templates from valid proofs

To generate test templates when we succeed in proving a conjecture, the general approach

is to h)ok at the leaves of the proof tree. Each leaf is a sequent that is TRUE*. The

implication

(AI ^ A2 ^ A3 ^ ...) --> (B1VB2 VB3 V ...)

will be TRUE if the left hand side is false or the right hand side is TRUE,

i.e., not(Al ^ A2 ^ A3 ^ ...) V 0B1 V B2 V B3 V ...)

i.e., not(Al) V not(A2) V not(A3) V ... V BI V B2 V B3 V ...

The above condition is TRUE if one or more terms are TRUE. In general, if we have n

terms, there are 2"-1 ways the above condition could be TRUE. For each of those

possibilities we will have a test template. For instance, in the above example, one test

template would be

not(Al) ^ not(A2) ^ not(A3) ^ ... ^ BI ^ B2 ^ B3 ^ ...

Generating Test Templates via Automated Theorem Proving 21

which corresponds to the case where all terms of the condition are TRUE. Another test

template would be

(AI) ^ not(A2) ^ not(A3) ^ ... ^ B1 ^ B2 ^ B3 A ...

which corresponds to the case where all terms except the first term are TRUE. Note that

some of these test templates will have no instances. For example, the test template

(x > 2) A not(x > 2)

has no instances.

In this approach we'll be generating a large number of test templates, exponential in the

order of the number of sequent formulas (or conditions). Most of the test templates will

have no instances because we are negating the antecedents that are usually the facts

specified in the model*. We suggest a differcnt approach that will generate fewer test

templatcs. To understand the new approach, we need to understand how PVS generates

proof goals when we try to prove a particular property.

* If a prCx,f goal could not be proved (because the sequent is FALSE), then the "strategy for geucrathlg test

templates from invalid proofs" should be applied.
* One or more of the antecedents could be wrong in the case where we arc considering a brand_ of the proof

trec that tk_s not cxhibit the property we are testing for.

Gcncraling Test Tcmplalcs via Automated Theorem Proving 22

Consider the conjecture conjl of Division_Result. In conil, we are trying to prove the

property "The ftmction does not return Error when the divisor is non-zero". When we try

to prove this property using PVS proof checker, PVS will check all possible execution

paths through the program and compares the output of the model for each execution path

with the symbol 'Error'. For the Division_Result example specification there are four

execution paths through the program corresponding to the four possible outputs 'Error',

'Zero', 'Positive', and 'Negative'.

For instance, consider the sequent at node 10 of the proof tree shown in Figure 4:

{-1} x!l = 0 AND (Zero-- Error)

[11 y_l=O

121 (y!l=0)

This sequent belongs to a proof branch that will yield the output 'Zero'. This proof branch

satisfies the condition "divisor is non-zero" and returns the symbol 'Zero'. PVS was

comparing the symbol 'Zero' with 'Error' to see whether they were equal. In which case,

we will fail to prove the above property. But the condition 'Zero = Error' (which means

that both the symbols "Zero" and "Error" are equivalent) is trivially FALSE. Since the left

hand sidc of the implication is FALSE, the proof goal is TRUE.

Generating Test Templates via Automated Theorem Proving 23

Similar sequents will be generated when PVS explores the execution paths that would

yield the ouput 'Positive' or 'Negative'. In either case the antecedent will be False and

hence the proof goal will be TRUE. Now, we consider the execution path that yields the

ouput 'Error' (i.e., the case where the divisor is zero) which corresponds to the sequent at

the node 7 of Figure 4

['ll y!l = 0 ANDTRUE

I°..

[11 (y.,l = o)

In this case, we'll be able to prove the implication since the right hand side of the

implication is a sub-condition of the left-hand side of the implication. The proof goal is

TRUE since the consequent 'y = 0' appears as a part of the antecedent.

So we have the following two types of proof goals that are trivially TRUE.

1)

2)

The sequent has atleast one antecedent that is FALSE. In this case the left-hand side of

the proof goal will be FALSE and hence the proof goal will be trivially TRUE.

One or more consequents also appear as antecedents. In this case, the right hand side of

the implication is a sub-set of the left-hand side of the implication. So whenever the

left-hand side of the implication is TRUE, the right hand side of the implication is also

TRUE. Hence the proof goal is TRUE.

GeneratingTestTemplatesviaAutomatedTheoremProving 24

As we shalldemonstrate,we caneasilyfind out whetheranyof the antecedentsarefalse.

The thlseantecedentsshall be ignoredwhile generatingthe testtemplates.If we haveone

or moreconsequentsthat appearalsoasantecedentsthentheyshall alsobe ignored.After

removing the antecedentsand consequentsas explained above, the test template

con'espondingto asequentof theform

(AI ^ A2^A3^.,.) -->(BIVB2VB3V...)

wouldbe

(A1^ A2 ^ A3 ^ ...) ^ not(Bl VB2VB3V ...)

i.e.

AI ^ A2 ^ A3 ^ ... ^ not(Bl) ^ not(B2) ^ not(B3) ^ ...

However, this general approach will not always work. The reason being that there are a

numbcr of ways to prove a conjecture, and hence the proof tree for any conjecture is not

unique. The test templates generated for different proof trees of the same conjecture differ

in the detail they have. i.e., if we generate test templates based on two proof trees A and B;

a single test template generated based on proof tree A might correspond to a number of test

templates generated based on proof tree B. Note that in the case where we fail to prove a

Generating Test Templates via Automated Theorem Proving 25

proof goal, this not a problem because whatever the proof trec may be, it is sure to identify

the case(s) for which the proof will fail.

Hence, we provide a heuristic approach to generating test templates for the case where we

succeed in proving the conjecture. We generate a test template corresponding to every leaf

of the proof tree as follows:

1. Prove the conjecture using only the fundamental rules (such as flatten and split). Do

not use any strategies (such as 'grind' and 'ground').

2. Add all the conditions in the antecedents to the test template except those that are

trivially FALSE.

For example, in the Division_Result proof, consider the sequent at node 10:

{-1} x!l=OAND(Zero=Error)

I.......

[1] y!l = 0

121 (y_!=O)

Generating Test Templates via Automated Theorem Proving 26

.

The condition 'Zero = Error' (which means that both the symbols "Zero" and "Error"

arc equivalent) is trivially FALSE. So we ignore that condition and add (x = 0) to the

test template.

If there are consequents, add all the negated consequents to the test template. Ignore the

consequents all of whose conditions appear as antecedents.

For example, in the Division_Result proof, consider the sequent at node 7:

I-1] y!l =0ANDTRUE

111 0'!1=o)

In this case, the consequent [1] has only one condition (y!l = 0) and that condition

appears as part of the antecedent [-1]. So we ignore the consequent [1] while

generating the test template.

As another example, consider the sequent at node 13:

{-1} ((x!l > 0 AND y!l > 0) OR (x!l < 0 AND y!l < 0)) AND (Positive = Error)

Ill x!l = o

[21 y!l = 0

"As we mentioned earlier, if tile ,antecedent has two or more conditions joined by conjunction(s) then each
such condition should Ix: trealed as a separate antecedent.

Generating Test Templates via Automated Theorem Proving 27

[31 (y!l =0)

In this case, the condition (Positive = Error) is False in the antecedent {-1 }, so we ignore

that condition and add the rest of the conditions of {-1} to the test template (refer to

heuristic 2). None of the consequents appear as a part of any antecedent. So we negate and

add all the consequcnts. Since the consequents [2] and [3] are the same, we can ignore [3].

. Check whether the test template has enough conditions to define the input to the

program. If yes we have the test template corresponding to the leaf. If not, consider the

sequent immediately above that leaf in the same branch of the proof tree. If there is no

such sequent, then the leaf cannot produce a test template. Otherwise repeat steps 2, 3,

and 4 for this sequent. We repeat this process until we get enough conditions to clearly

define the input to the program. There is no such case in our simple example

Division_Result.

GeneratingTestTemplatesviaAutomated Theorem Provi,_g 28

Figure 5: Skeleton of the TTH for conjl of Division_Result

,

,

If no leaf of a subtree could produce a test template then the root of the subtree must be

treated as a leaf. There is no such case in our simple example Division_Result.

If there is only one skolemized* variable corresponding to each original variable then

replace the skolemized variables with the original variables, otherwise replace each

skolemized variable with a unique variable name.

For example, if the variable x appears as only one skolemized variable x!l, then

replace the skolemized variable x! 1 with x. If the variable y appears as two skolemized

variables y! 1 and y!2 then replace them with yl and y2 respectively.

"Skolcmization is a general technique to eliminate universal and existential quantifiers.

GeneratingTestTemplalesviaAutomatedTheoremProving 29

, Add any additional constraints given in the requirements. In the Division_Result

example, the additional constraints given in the requirements would be "x and y are

integers".

4.4 Structuring the Test Templates

As we shall see from Figure 7, for a simple problem like the 'triangle' example we have a

huge proof tree with approximately 50 leaves and each leaf lead to a test template. For a

complex problem with lots of nested conditional statements, the number of test templates

could easily become unmanageable. Hence we need to structure these test templates.

Since we generated test templates based on the proof tree, they have inherent hierarchy

built into them. To arrange the test templates in hierarchy, remove all the nodes in the

proof tree except the leaves and the nodes that join different branches of the proof tree.

Thcn wc will have a skeleton for the Test Template Hierarchy (TTH).

Consider the example PVS specification of Division_Result (refer to Figure 3). If we

rcmove all the nodes except the leaves and the nodes that join different branches from the

proof trcc of conjl (refer to Figure 4), we will have the skeleton of TTH for conjl.

Skeleton of TTH for conjl is depicted in Figure 5. 'GI' corrcsponds to the goal numbered

6 in the proof tree (refer to Figure 4). G2, G4, G6, and G7 in the TTH skeleton correspond

GeneralingTestTemplatesviaAutomated Theorem Proving 30

to the leaves numbercd 7, I0, 13, and 14 in the proof tree respectively. The nodes G3, and

G5 in the TTH skeleton correspond to the nodes 9, and 12 in the proof tree respectively.

To get the TTH, place each test template at the leaf that generated the template. If all the

child nodes of a node have some condition in common then remove that condition from all

the child nodes and put it at the parent node. Starting at the leaves repeat this procedure

upto the root node. When we are done, we will have the TTH graph with conditions placed

at the nodes.

The conjecture, conjl, of the PVS specification Division_Result (shown in Figure 3) yields

the following test templates':

TI: (y = 0) ... derived from the leaf no. 7 of proof tree

T2: (x = 0 ^ y/= 0) derived from the leaf no. I0 of proof tree

T3: (x > 0 ^ y > 0) V (x < 0 ^ y < 0) ^ (x/= 0) ^ (y/= 0) derived from the leaf no. 13

T4: not(x > 0 ^ y > 0) ^ not(x < 0 ^ y < 0) ^ (x/= 0) ^ (y/= 0).derived from the leaf no. 14

Now, we place T 1 at the node G2 of TTH skeleton (refer to Figure 5), T2 at G4, T3 at G6,

and T4 at G7. Since both the nodes G6 and G7 have the condition (x/= 0) ^ (y/= 0) in

common, we move that condition to their parent node G5. Then we'll have the condition (x

> 0 ^ y > 0) V (x < 0 ^ y < 0) at G6 and the condition not(x > 0 ^ y > 0) ^ not(x < 0 ^ y < 0)

at G7, and the condition (x/= 0) ^ (y/= 0) at G5. Now, both the nodes G4 and G5 have the

"Tile actual pr¢_cdure of deriving these test templates is exemplified in tile next section.

GeneraliugTestTemplatesviaAutomatedTheoremProving 31

condition(y/= 0) in common.Sowemovethatconditionto their parentnodeG3.Thenwe

will havethecondition(x > 0) at G4,and(x/= 0) at G5,and(y/= 0) at G3. SinceG2 and

G3 havenoconditionsin commonwe havefinishedbuilding theTTH. The final 'ITH is

shown in Figure 6.

To get back a test template from the TTH, we select a path from the root node of the TTH

graph to a leaf and take the conjunction of all the conditions that appear in that path.

Arranging test templates in this manner gives us the convenience of choosing test

templates with a specific property.

In the above example, if we are interested only in the test cases that correspond to non-zero

input. Then we have to look for the conditions (x/= 0) and (y/= 0). So, the path from the

root node of TTH, G1, should include both the nodes G3 and G5, since G3 has the

condition (y/= 0) and G5 has the condition (x/= 0). So we have the two paths (G1, G3,

G5, G6) and (G1, G3, G5, G7) which correspond to the test templates T3 and T4

respectively*.

" Arr,'mgiug fl_e test templates into "I'I'H is very uselul in obtaining test templates with a particular property
when wc have huge prowl"trees with lots of condititnis.

Generaling Test Templates via Automated Theorem Proving 32

I (x_ 0 "y>O)'u' no_x _ 0 " y_ 0)" I(x_O"y<O) not(x < 0 "y< O)

Figure 6: TTH for conjl of Division_Result

5. A Detailed Example

In this section we will demostrate the heuristic approach to generating test templates with

the 'triangle' example.

GeneratingTestTemplatesviaAutomatedTheoremProving 33

5.1 Generating Test Templates for Invalid Properties

We will first consider the case where we fail to prove the property, i.e. we will have one or

more proof goals that could not be proved to be TRUE.

In this case, if we have a sequent of the form

(A1 ^ A2 ^ A3 ^ ...) --> (BI V B2 V B3 V ...)

the test template would be (refer section 4.2)

(A1 ^ A2 ^ A3 ^ ...) ^ NOT(B1VB2 VB3 V...)

When we attempted to prove the property "/t is never the case that the triangle is not

Eq,ilateral or Isosceles or Scalene" based on the triangle specification depictcd in Figure

1, we failed to prove the following proof goals:

proof goal 1: Given x, y, and z are integers and y = z, prove that x = z.

proof goal 2: Given x, y, and z are integers and x = z, prove that x = y.

The actual sequents corresponding to these proof goals are

Generating Test Templates via Automated Theorem Proving 34

Sequent 1:

[-1] integer_pred(x! 1)

[-2] integer_pred(z!l)

[-3] y!l =z!l

Sequent 2:

[-1] integer_pred(x!l)

[-2] integer_pred(y!l)

[-31 (z!l =x!l)

I

[1] x!l =y!l

x!l, y!l, and z!l are the skolemized variables for x, y, and z respectively.

5.ntzeger _pred(x! 1) means that x! 1 is an integer predicate. Based on the strategy

described in section 4.2, we can derive the following test templates.

TI: integer(x) ^ integer(z) ^ (y = z) ^ not(x = z)

T2: integer(x) ^ integer(y) ^ (z = x) ^ not(x = y)

Generating Test Templales via Automated Theorem Proving 35

Note that the Valid Input Space (VIS) consists of all and only those (x, y, z) whcre x, y,

and z ale integers and (x, y, z) must form a valid triangle (specified in the requirements).

So we have to impose these additional conditions on T1 and T2. Now, the templates will

be

TI: integer(x) ^ integer(y) ^ integer(z) ^ Form_Triangle(x, y, z) ^ (y = z) ^ not(x = z)

T2: integer(x) ^ integer(y) ^ integer(z) ^ Form_Triangle(x, y, z) ^ (z = x) ^ not(x = y)

These two templates correspond to the cases where the model fails to exhibit the property

"It is never the case that the triangle is not equilateral or isosceles or scalene".

5.2 Generating Test Templates for Valid Properties

We demonstrate test template generation in the case of valid proofs with the following

slightly modified requirements specification for the same triangle problem.

"Write a program that reads 3 integer values per line from inpuL The 3

values are interpreted as representing the lengths of the sides of the

triangle. The program prints a message that states whether a triangle is

Scalene, Isosceles, or Equilateral."

Now, the program has to deal with invalid input. When we model this problem, we have to

decide on the level of abstraction. For example, we can model this problem in two ways. In

Ge,_cralingTestTemplalcsviaAutomatedTheoremProving 36

the first method we can write two separatefunctions;one to validate the input, i.e. to

ensurethatinput containsthreeintegersandanotherfunction to checkwhethera givenset

of threeintegersform a triangle.In this approachwedon't haveto actuallyparsetheinput

string to get the integers,we just needto makesurethat the input containsthree integers.

In the secondmethodwe actually parsethe input to get three integersand thencheck

whethertheyform a triangle.We took the secondapproachbecauseit will bea betterway

of demonstratingtesttemplategeneration.ThePVS specificationis givenin AppendixB.

5.2.1 Assumptions

As PVS does not have any in-built functions to handle strings or character arrays, we

decided to work with arrays of ASCII codes instead of arrays of characters. The

requirements specification does not have enough implementation details, for example it

does not specify what the program output should be if the input does not have three

integers. So the implementation has to make some reasonable assumptions. The model

given in Appendix B works under the following assumptions

1) the numbers in the input line are separated by one or more spaces.

2) each number can be optionally preceded (immediately) by a '+' or '-' sign.

3) any leading blank spaces in the input line will be ignored.

4) every input lilac must be terminated by the NL character.

GeneralingTestTemplatesviaAutomatedTheoremProving 37

5) any character other than ('0'-'9", ' ', '+' or '-') shall result in the error

'ERR_INV_ARG'. If a '+' or '-' sign appearsit must be immediatelyfollowed by a

number(consistingof oneor moredigits).

6) If the input lilac is valid (i.e. satisfiescondition 5) but hasgreaterthanthreenumbers

thcntheerror 'ERR_MORE_ARGS'shallbereturned.

7) If the input line is valid (i.e. satisfiescondition 5) but haslessthan threenumbersthen

theerror 'ERR_FEW_ARGS'shallbereturned.

8) If the input line is valid (i.e. satisficscondition 5) andhasexactlythreenumbersandif

the threenumbcrsdo not form a triangle then the error 'ERR_NOT A TRIANGLE'

shall be returned.Three integersform a triangle if the sum of any two integersis

greaterthanthethird integer.

9) If the input line is valid (i.e. satisfiescondition 5) andhasexactlythreenumbersandif

the three numbers form an equilateral triangle then the program shall return

'Equilateral'.

10)If the input line is valid (i.e. satisfiescondition5) andhasexactly threenumbersandif

thethreenumbersform an isoscelestrianglethentheprogramshall return 'Isosceles'.

11)If the input line is valid (i.e. satisfiescondition 5) andhasexactlythreenumbersandif

thethreenumbersform ascalenetrianglethentheprogramshallreturn 'Scalene'.

12)If the input line is valid (i.e. satisfiescondition 5) andhasexactly threenumbersandif

the threenumbersform a trianglebut the triangle is not equilateralor isoscelesor

GeneratingTestTemplates via Automated Theorem Proving 38

scalene, then there is an error in our model (since any triangle will be one of the 3

types). In such a case the error 'Error' shall be returned.

The model (given in Appendix B) has two main functions 'Parse_Input' and 'Triangle'.

'Parselnput' is a rccursive function that takes the array of ASCII codes as input and

parses it to integers. The other parameters to this function are the current index with in the

array (since it is a rccursive function), the number of integers found till the current index,

whether a sign is found, whether the previous character is a digit or not, an array of the

integers found till the current index, sign, and 'inputlen'. If the input line has three integers

then the function 'Triangle' is called with those three values; otherwise an appropriate

error message is returned. 'Triangle' function checks whether the three integers form a

triangle, if so returns the type of the triangle. The constant 'MAXLEN' is the maximum

input length and the input array indices have values in the range (0, MAXLEN - 1). We

call thc function 'Parse_Input' with the input (array of ASCII codes) and the index 0.

Generating Test Templates via Automated Theorem Proving 39

(10 e3q_d 'f_.l_t"_

(11 Z!_-i _

(:L2 _,, imp,)

I-
(:13 ¢xle_nd L'_i_nsl¢")

(14 l!ft-- if)

(15 _lit)

(17 J_l it)

(20 f_ttmO

F
(2_ tllJttm) (_ nl_itte_)

(24 J_lit) (_2 ,_Iit -1)

,t,.._, F F F F

.F _FFF

(,_ fbl ttz_)

(45 _lit)

(_2 flLtta)F

(53 e_lit -'J.)

,,,J....,.J.,.,,,.L.,,,.L.., ,,,J,.,..,

Figure 7: Partial proof tree for conj6 of modified triangle example

Generating Test Templates via Automated Theorem Proving 40

As wc mentioned earlier, if the model returns 'Error' then there is an error (refer to

assumption 12) in our model. Lets try to prove the property "The model will not return

'Emir' flJr any input". Observe that 'Error' is returned by the function 'Triangle' when

the three integers form a triangle but the triangle is not equilateral or isosceles or scalene.

Also note that the 'Triangle' function is called by the function 'Parse_Input' only when the

index equals input length and the input has exactly three integers. So, we need to prove

only for the case when index equals inputlen-1 (since the last character must be a NL

character).* So, we need to prove that "The model will not return 'Error' when we

invoke 'Parse_Input' with the input (array of ASCII codes) and with index = inputlen -

_°

5.2.2 Generating Test Templates

In PVS, a conjecture can be proved in a number of different ways. For example, the above

property can be proved with the single strategy

(REPEAT* (THEN* (EXPAND "Parse_Input") (GRIND))).

To generate the test templates we need a detailed proof, i.e. we need to prove the

conjecture using only the very fundamental rules (such as 'flatten', and 'split') and we do

not want to use strategies. We proved the above property and the proof tree is given in

*Proving the property "The model will not return 'Error'fi_r any input" is cumbersome, so wc simplified it.

Generating Test Templates via Automated Theorem Proving 41

Figure 7". Proof tree does not show the sequents but it shows only the rules applied at each

proof goal. The detailed proof with all the sequents is too lengthy to present here t. Here we

will show only some selected seuqents to demonstrate the concepts.

Consider the sequent 19 in Figure 7:

{-1}

{-2}

{-3}

[-41

[-Sl

[-61

[-71

[-81

[-9]

[-lO1

[-111

[-121

edges!l(0) = edgesH(1)

edges! 1(1) = edges! l(n! 1) * sign! 1

Error?(Equilateral)

((edges!l(0) + edges!l(1)) > edges! l(n!l) * sign!l)

((edges! 1 (1) + edges! 1 (n! 1) * sign_ 1) > edges! 1(0))

(edges! 1 (0) + edges! 1 (n! 1) * sign! 1 > edges! 1 (1))

inputlen!l >= 0

integer_pred(n! 1)

integer_pred(sign! 1)

valid!l

a!l(inputlen!l - 1) = 32

(1 + n!l = 3)

.......

"In Figure 7 we did not present the complete proof flee. The complete pr¢_)f tree could be found at the URL:

http:llwww.cs, wvu.cdul~pkanchcrlthesi_fig7.ps

*The complete proof is available at the URL: http:llwww.cs.wvu.edu/-pkancher/lhesis/proof6.6.txt

Generating Test Templates via Automated Theorem Proving 42

edges(0), edges(l) and edges(2) are the three integers that represent the three

sides of the triangle. Note that the last antecedent [-12] indicates that (1 + n = 3) or

(n = 2) . So in this sequent, edges (n) refers to edges (2). The reason why we are

multiplying edges (2) with 'sign' in all the antecedents is that in our model, we allowed

the numbers to be preceded by an optional sign. After we parse the number we are

multiplying it with +1 or -1 depending on which sign preceded that number. For

convenience, we will refer to edges(O), edges(l) and 'edges(2) * sign' as

e0, el and e2 respectively.

The first two antecedents {-1 } and {-2}

{-1} edges! 1(0) = edges! 1(1)

{-2} edges!l(l) = edges[l(n!l) * sign!l

mean that e0 = el and el = e2. The third antecedent {-3}

{-3} Error?(Equilateral)

means that the symbol 'Error' is same as the symbol 'Equilateral', which is FALSE.

The n cxt Illree ,-mtcccdcn ts

1-41 ((edges!l(0) + edges!H1)) > edges!l(n!l) * sign!l)

1-51 ((edges!l(l) + edges!l(n!l) * sign!l) > edges!l(0))

Generating Test Templates via Automated Theorem Proving 43

{-61 (edges!l(O) + edges!l(n!l) * sign!l > edges!l(1))

mean that (e0 + el > e2), (el + e2 > e0) and (e0 + e2 > el). The next three antecedents do

not really contribute anything to the test template and can be ignored. The last three

antecedents

[-lOi valid!l

{-11] a!l(inputlen!l - 1) = 32

1-121 (l + n!l = 3)

mean that valid is TRUE, a (inputlen - 1) = ' ' and n = 2.

Now let's construct the input string based on these conditions. We know that the

a (inputlen) = ' \n' or NL (refer to assumption 4). Since 'valid' is TRUE, we are

currently parsing a number. In other words, the character preceding the current character,

which is 'inputlen - 1' is a digit. As we can see from the specification of the

conjecture, we are interested only in the 'inputlen - 1' character of the input string.

So we got specific conditions that clearly specify the 'inputlen - 1' character. As we

don't have any information on the sign preceding the numbers, we will assume that the

numbcrs can be optionionally preceded by the sign (either '+' or '-'). 'n = 2' indicates that

there were two integers preceding the number that is currently being parsed. So the input

stri,lg would of the lbrm:

Generating Test Templates via Automated Theorem Proving 44

where

IS = "{B}IsID{D}B{B}[sID{D}B{II}IsID{D}Bkn"

B : a blank space

{B} : zero or more blank spaces

[s] : optional sign (i.e. either '+' or '-' character)

D : a digit [0- 9]

{D} : zero or more digits

'_a' : newline character

The three D{D} substrings of the above input string represent the three numbers.

A sample input string of this format will look like

"23 +82376 -7635 \n".

Note that we generated this input string based on just the last three antecedents of the

sequent. We already mentioned that the three antecedents [-7], [-8] and [-9] are trivial and

hence they can be ignored while generating the test template. The conjunction of the

antcccdents from [-1] to [-6] ignoring {-3 }, since it is FALSE (refer to heuristic 2), give

(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

So the complete test template corresponding to this sequent would be:

Generaling Test Templates via Aulomated Theorem Proving 45

TI: (e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^ IS =

"{B}Is]D{D}B {ll}[sID{D}B{B}[sID{D}B_a"

which refers to the case of "Equilateral Triangle".

As another example consider the sequent at node 24 (shown in Figure 7):

{-1}

1"3]

I"41

1-51

1-61

1-71

[-81

[-91

1-101

1-111

((edges! 1(0) : edges! 1(1)) AND (edges! 1(1)/- edges! 1 (nil) * sign! 1))

[-21 Error?(Isosceles)

((edges! 1 (0) + edges! 1 (1)) > edges! 1(nil) * sign! 1)

((edges! 1 (1) + edges! 1(n! 1) * sign! 1) > edges! 1 (0))

(edges! 1(0) + edges! 1(nl 1) * sign! 1 > edges! 1 (1))

inputlen!l >= 0

integer_pred(n! 1)

integer_pred(sign! 1)

valid! 1

a!l(inputlen!l - 1)= 32

(1 +nll = 3)

.

Ill edgesH(0) = edges!l(l) AND edges!l(1) = edges!l(n!l) * sign!l

As in the previous case, the antecedent [-2] is FALSE and the antecedents [-6] to [-8] are

trivial and can be ignorcd while generating the test template. The antecedents [-9] to [-11]

give the same input string as in the previous case. Note that the only consequent [1], has

Generating Test Templates via Automated Theorem Proving 46

two conditions joined by conjunction. Only the first condition appears in the antecedent [-

1]. So the conseuqent [1] should be negated and added to the test template. The complete

test template for this sequent would now be

T2:(e0 = el) ^ (el/=e2) ^ (e0 + el >e2) ^ (el + e2 > e0) ^ (e0 +e2 > el) ^

not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

i.e._

T2:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (ell + e2 > el) ^

((e0/= el) V (el/= e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

The condition ((cO/= el) V (el/= e2)) will be TRUE if one or both the terms are TRUE.

Hence we have the following three possibilities:

(eO I= el) is TRUE and (el I= e2) is FALSE.

(eO I= el) is FALSE and (el/= e2) is TRUE.

(eO/= el) is TRUE and (el/= e2) is TRUE.

Corresponding to fllese fllrce cases, we will have file following fllree templates

T2.a: (e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

(eO/= el) ^ not(el/= e2) ^ IS = "{B}[sID{D}B{BIIs]D{D}B{B}[sID{D}BXn"

T2.b: (e0 = el) ^ (el I= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

Generating Test Templates via Automated Theorem Proving 47

not(e0/= el) ^ (el/= e2) " IS = "{B}IsID{D}B{B}[slD{D}B{B}islD{D}Bha"

T2.c: (e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (el) + e2 > el) ^

(e0/= el) ^ (el/= e2) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}Is]D{D}B',n"

In T2.a and T2.c, we have two terms (e0 = el) and (e0 /= el) joined by a

conjunction and hence these templates cannot have any instances. So we can ignore T2.a,

T2.c. Now, rewriting T2.b we have

T2:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B }[slD{ D}B {B}Is]D{D}B {B}[slD{ D}B_ °'

Which corresponds to one of the cases of "Isosceles triangle".

In the same way, test templates generated for the sequents 25, 26, 30, 32, 34, 35, 36 (refer

to Figure 7) would be respectively T3, T4, T5, T6, T7, T8, and T9 shown below:

T3: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}[s]D{D}B{B}[s]D{D}BW'

T4:(e0 = e2) ^ (e0/= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (el) + e2 > el) ^

IS -- "{B}Is]D{D}B{B}Is]D{D}B{B}[s]D{D}BW'

TS: (e0/= el) ^ (el/= e2) ^ (e2/= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

Generating Test Templates via Automated Theorem Proving 48

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[sID{D}B{B}[s]D{D}BXn"

T6:(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

^ not((e0/= el) ^ (el/= e2) ^ (e2/= e0)) ^ not((e0 = el) ^ (el/= e2))

^ not((el = e2) ^ (e0/= e2)) ^ not((e0 = e2) ^ (e0/= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[sID{D}B{B}[s]D{D}B{B}ls]D{D}B_n"

Observe that the above template T6 does not have any instances.

T7:not((e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)) ^

IS = "{B}[slD{D}B{B}[s]D{D}B{B}[s]D{D}BW'

which is equivalent to

not(eO + el > e2) V not(el + e2 > el)) V not(eO + e2 > el) ^

IS = "{B}[sID{D}B{B}[sID{D}B{B}[s]D{D}BXn"

The condition not(c0 + el > e2) V not(el + e2 > e0) V not: (e0 + e2 > e3.) will be

TRUE if atleast one of the terms is TRUE. Hence we have seven possibilities. The test

templates corresponding to these seven possibilities would be

T7.a: not(e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IsID{D}B{B}[s]D{D}BiB}Is]D{D}BXn"

T7.b: (e0 + el > e2) t, not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}[s]D{D}B{B}[slD{D}BW'

Gcnerating Test Templatcs via Automated Theorem Proving 49

T7.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}Is]D{D}B{B}[s]D{D}B_n"

T7.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

Is = "{B}IslD{D}B{B}[s]D{D}B{B}[slD{D}B_a"

T7.e: (e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}Is]D{D}B{B}[slD{D}Bha"

T7.f: not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

T7.g: (e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[slD{D}B{B}ls]D{D}B{B}[slD{D}B_n"

T8:(1 + n < 3) ^ not(l + n = 3) ^ valid ^ a(inputlen- 1) =' '

Which means that the input has less than 3 numbers. Hence the input string would be

IS = "{B}IIsID{D}B{B}IIslD{D}B_a"

So the test template would be just the input string, i.e.

T8: IS = "{B}IIsID[D}B{B}I[s]D{D}BX, n"

Generating Test Templates via Automated Theorem Proving 50

The reason why we do not have any conditions involving e0, el, and e2 in this case is

that the input string does not have three numbers. Since the input is invalid, the function

'Triangle' won't be invoked.

T9: not(l + n = 3) ^ not(l + n < 3) ^ valid ^ a(inputlen - 1) =' '

Which means that the input has more than 3 numbers. So the input string would be

IS = "{B}[sID{D}B{B}[s]D{D} B{B}[sID{D}{B{B}[s]D{D}}B{B}[s]D{D}BXn"

So the test template would be

T9: IS = "{B}IsID{D}B{B}IsID{D} B{B}[sID{D}{B{B}[sID{D}}B{B}[s]D{D}BXn"

5.2.3 Finding Errors in Specifications

As wc shall see, the process of generating test templates could find bugs in the model.

Consider the sequent at node 51 of Figure 7

{-1} edges!l(0) = edges!l(l)

{-2} edgesll(l) = edgesll(2)

{-3} Error?(Equilateral)

[-41 ((edges!l(0) + edgesll(1)) > edges!l(2))

[-5l ((edgesll(l) + edges!l(2)) > edges!l(0))

Generating Test Templates via Automated Theorem Proving 5l

[-61 (edges!l(O) + edges!l(2) > edges[l(l))

[-7] |nputlen!l >= 0

[-8] integer_pred(n!l)

[-9] integer_pred(sign!l)

[-10] valld!l

[-11] a!l(inputlen!l - 1) > 47

[-12] a!l(inputlen!l - 1) < 58

[-13] (n!l =3)

[1] a!l(inputlen!l - 1) = 32

From the above antecedents we have

(valid = TRUE) ^ a (inputlen

stringwould be of the form

- i) = [0 - 9] A (n = 3). So the input

IS = "{B}IsID{D}B{B}Is]D{D}B{B}[s]D{D}B{B}Is]DDID)_a"

Notice that in the earlier sequents, for e2 we had 'edges! 1 (n[1) * sign! 1' in all

the antecedents but now we have edges!l (2). Also observe that in all the earlier

sequents we had (1 + n!l = 3) but now we have (n!l = 3). To find out why, we

can check the previous sequents of this branch of proof tree till we find the sequent with

edges (n! 1), (which is sequent 41).

GeneratingTestTemplatesvia Automated Theorem Proving 52

l-l] inputlen!l >= 0

[-21 integer_pred(n! 1)

[-31 integer_pred(sign!l)

[-4] valid!l

{-5} a!l(inputlen!l - 1) > 47

{-6} a!l(inputlen!l - 1) < 58

{-7} Error?(Parse_Input(a!l, inputlen_l, n!l, found_sign!l, FALSE,

edges!l WITH [(n!l) := a!l(inputlen!l ° 1) + 10 * edges!l(n!l) - 48],

sign!l, inputlen!l))

[1] a!l(inputlen!l - 1) = 32

As we can see in the antecedent {-7}, unlike the earlier scquents, edges!l(n!l) was not

multiplied with sign!l. To find out why, we need to look at the model.

Notice that the input string has four numbers. In our model, under these conditions, we will

be executing the fl)llowing statement

Parse_Input(a, index+l, n, found_sign, false,

(edges(n)*10)+get_digit(a(index))l, sign, inputlen)

Edges WITH [(n) :=

Now, we realize the problem. When we don't have a space after the last number, in that

case we are not multiplying the number with the sign as we did in the case where the last

number was followed by atleast one space. Also note that we did not even increment 'n'.

So instead of returning the error 'ERR_MORE_ARGS' (since the input string has four

GeneratingTestTemplatesviaAutomatedTheoremProving 53

numbers),we are ignoringthe fourthnumberin the input stringand treatingit asa valid

input.Wc foundanerror in our model.

Note that this actually does not violate the requirementsspecified for this problem.

Becausetheproblemstatementdoesnotmentionwhat theprogramoutputshouldbewhen

therearemorethanthreenumbersin the input string.But in section5.2.1,we madesome

assumptionsin orderto meaningfullydefinethe outputof theprogram.The assumption6

statesthat the programshouldreturn 'ERR_MORE_ARGS'if the input string hasmore

thanthrccnumbers.Althoughwedid not violatetherequirementsstatedfor thisprogram,

we did not do what we wantedto do (i.e., we violatedassumption6). This would have

bccnanerror if therequirementsfor thisprogramhadclearlyspecifiedthedesiredoutput

for invalid input strings.

Also observethat we were ableto provethe conjectureeven thoughthe modelhad an

error.Thereasonbeingthattheconjectureweprovedverifieswhetherthemodelexhibitsa

specificpropertyandthatpropertydoesnot haveto do anythingwith this error. If we had

tried to provesomeconjecturethatissomeway relatedto thiserror, wewould havefound

this error. For instance,if we try to prove the property "'If the input hasmore than 3

integersthen the programreturnsERR_MORE_ARGS",thenwe would havefound the

aboveerror.

As another example, consider the sequent at node 80 of Figure 7.

Generating Test Templates via Automated Theorem Proving 54

[-1] inputlen_l >= 0

1-2] integer_pred(n! 1)

[-3] integer_pred(sign!l)

[-4l a:l(inputlen!l - 1) = 43

{-5} (n:l =3)

{-6} ((edges!l(0) + edges!l(1)) > edges!l(2))

{-7} ((edges!l(1) + edges!l(2)) > edges!l(0))

{-8} (edges!l(0) + edges!l(2) > edges!l(l))

{-9} (edges!l(2) = edges!l(0))

Ill valid!l

[2] 43 = 32

{3} found_sign! 1

{4} edgesIl(0) = edges!l(1)

{5} edges!l(l) = edges!l(2)

{6} (edges!l(O) = edges!l(2))

From the formulas [-4], {-5 }, [1], and {3 }, we have the following conditions*.

a(inputlen - 1) = '+' ^ (n =

the input string would be of the form

3) ^ not (valid) ^ not (found_sign). So

is ="{BllsID{DIB{BIIsID{DIB{BID{D}B{B}+_n,,

GeneratingTestTemplatesviaAutomatedTheoremProving 55

We would expect the model to return 'ERR_INV_ARG' since the assumption 5 in section

5.2. I states that "If a '+' or '-' sign appears, it must be immediately followed by a number

(consisting of one or more digits)". Once again this does not violate the requirements

specified for this problem but still we consider it as an error since it violates our

assumption based on which we developed the model.

Similarly, the sequent 85 of Figure 7 corresponds to the input string of the form

IS = "{B}Is]D{D}B{B}[sID{D}B{B}D{D}B{B}-_n"

Which will also lead to an error.

As a final example, consider the sequent at node 116 of Figure 7.

[-1] lnputlen!l >= 0

[-2] integer_pred(n!l)

[-3] lnteger_pred(signll)

[-4] a11(inputlen!1 - 1) > 47

[-51 a!l(inputlen!l - 1) < 58

{-6} Error?0ERR_MORE_ARGS)

[1] valid!l

[2l a!l(inputlen!l - 1) = 32

[3] a!l(inputlen!l - 1) = 43

"Note that when 'valid' is FALSE, we must have already incremented 'n' and multiplied 'edges! l(n! 1)' with

'sigu! 1' in the previous iteration of tile recursion.

Generating Test Templates via Automated Theorem Proving 56

[4] a!l(inputlen!l - 1) = 45

{5} (n!l= 2)

As we mentioned earlier, we are trying to prove that the model will never return the

symbol 'Error' for any input. So PVS will check all possible execution paths through the

program and compare the output of the model with the symbol 'Error'. In this case, the

execution path whose output would be the symbol 'ERR_MORE_ARGS' was under

consideration.

From thc formulas [-4], [-5], and [1] to {5}, we have the following set of conditions

a(inputlen - 1) = [0 - 9] ^ not(valid) ^ not(n = 2).

If (n > 2) then the output 'ERR_MORE_ARGS' is what we expect since there will be

more than three numbers in the input string. In the case (n < 2), we would expect the

program to return 'ERR_FEW_ARGS' not 'ERR_MORE_ARGS'. So this is another error

in our model. The corrected model, and the test templates arc presented in Appendix C.

GeneratingTest Templates via Automated Theorem Proving 57

6. Discussion

In the earlier sections we explained the methodology of test template generation based on

the properties stated in the requirements. The properties that should be exhibited by the

software can be categorized into 3 classes:

1) Safety property: no execution path should exhibit this property

2) Liveliness property: some execution paths in the model should exhibit this property

3) Invariant property: all execution paths must exhibit this property.

As an example, consider the requirements for the mutual exclusion problem in multi-

programming environment [7].

I) Only one process can execute its critical section at any one time.

2) When no process is executing in its critical section, any process that

requests entr), to its critical section must be permitted to enter with

out de/ay.

3) When two or more processes compete to enter their respective critical

sections, the selection cannot be postponed indefinitely.

4) No process can prevent any other process from entering its critical

section indefinitely; that is eve O, process shotdd be given a fair

chance to access the shared resource.

Generating Test Templates via Automated Theorem Proving 58

The safcty property is the logical negation of the invariant property. So any safety property

can be paraphrased to gct an equivalent invariant property. For example, the property 1 in

the above specification can be thought of as a safety property "'There is no execution path

in which more than one process is in its critical section simultaneously". It can be

paraphrased as an invariant property "In every execution path, there is atmost one process

in its critical section at any given instant". We can directly specify these properties in PVS

as conjectures and test templates can be generated as explained in the earlier sections.

In the remainder of this section we'll demonstrate the significance of test template

generation from the proof tree with a practical example. This example will also illustrate

the significance of testing for safety properties in real world applications. The requh'ements

specification for the example is given below:

Generating Tcst Templatcs via Automated Theorem Proving 59

Procedure: Scheduler (c_dled every 125ms)
Check. for Overrun;
Run_Tasks;

End Schcduler;

Procedure: Check_For_Overrun

For I ill 1..Task_List.num {

If (Proccss_State(I) == RUNNING){
Set_Error_Register(); -- task did not finish ill the e,'wlier run.

Halt_System0;
}
Else

ProcessState(I) := WAITING; -- ready to be executed ill this run.
}

End Check_For_Overrun;

Procedure: Run_Tasks

Current_Task_Index := 1;

Whilc(Currcnt_Task_Index <= Task_List.num) {
Process_State(Current_Task_Index) := RUNNING;

Execute_Task(Current_Task_Index); -- jump to new address m_d start executing file task
Process_State(Current_Task_Index) := COMPLETE;

Current_Task_Index++;
}
Wait For Interrupt0; -- sleep till the 120ms hardware interrupt occurs.

End Run_Tasks;

Figure 8: Pseudo code for the scheduler

Write a program for a scheduler that will schedule a set of fixed number

of tasks in a fixed order. Initially all the tasks will be in the "WAITING"

state. As soon as a task is scheduled, its state is changed to "RUNNING".

Eveo, task has finite execution time (not a constant, since it depends on a

munber of factors). A hardware interrupt will be generated eve_ 120ms

and will halt the scheduling process hnmediately. It is intended that all

the tasks should be scheduled and finish execution within this time limit.

After 5ms of dead time (during this period the bus will be inactive), the

Generating Test Templates via Automated Theorem Proving 6O

scheduler is re-started and it should start executi,g the tasks from the

first one. If all the tasks are not finished in the time limit then the

scheduler should detect this when it is entered again after the 5ms dead

time and set the Oth bit in the Error register (#6A5F) and halt the system.

Note that testing an implementation of the scheduler for functional correctness is a difficult

problem because there are an infinite number of states where an interrupt can occur.

Testing a program for all these cases is not only impractical but is not possible. So we

cannot prove the functional correctness of this program by conventional testing methods.

This scheduler might be part of a safety critical system and hence proof of its functional

correctness may be essential. We might model the scheduler algorithm in a formal

language and prove its functional correctness. However, our formal specification itself

might not be an exact representation of the actual implementation. There might exist some

inconsistencies between the model and the actual implementation. So, If we find some

error in the specification, we would want to test the implementation for that error. If the

formal specification fails to exhibit a property, we would like to find a test case

corresponding to this failure and test our implementation for that particular test case.

Modeling interrupts in PVS is difficult, so here we present only the pseudo code. The

pseudo code for scheduler is shown in Figure 8. The scheduler is called every 125ms after

the 5,aas dead interval. Scheduler first calls Chcck_for_Overrun to see whether any of the

tasks are in the RUNNING state when the 120ms hardware interrupt occurred. If so, it'll

set the error register and halt the system. Otherwise all the processes' states are set to

GeneratingTestTemplatesviaAutomatedTheoremProving 61

WAITING. The schedulerthen calls the function Run_Tasksto execute the tasks.

Run_Taskswill seteachtask' stateto RUNNINGjust beforejumping to thetasks'address.

After the task is finished, control is returned to the Run_Task procedure and the tasks'

state is set to COMPLETE. This procedure is repeated for all the tasks starting with the

first.

Now, we are interested in knowing whether this code will satisfy the requirement "If any

of the tasks did not finish in the previous run, then the 0 th bit of the Error Register should

be set and the system should be halted". If we model this scheduler algorithm in PVS, we

can spccifiy the above property as "Error Register is set iff there exists a task that did not

finish in the earlier run". When we attempt to prove the above conjecture in PVS, we will

fail to prove it. The model (assuming it is developed based on the pseudo code presented

in Figure 8) will not be able to detect that some tasks did not execute if the hardware

interrupt occurs after execution of one task and before the start of execution of the next

task (i.e. when the control is in scheduler). This might lead lead to stack overflow and

other serious problems. Finding such a subtle problem with conventional testing would be

very difficult if not impossible.

GeneratingTestTemplatesviaAutomatedTheoremProving 62

7. Conclusions

Conventional testing methods fail to prove the correctness of the program because of very

large input space. In the presence of evolving specifications and code changes it is not

sufficient to prove the correctness of the specification because of the inconsistencies that

exist between the formal specification and implementation. We suggested and

demonstrated a new method of testing software based on the formal specification. In this

approach we will be generating test templates corresponding to the properties stated in the

requirements. A brief overview of the procedure for generating test templates follows.

The program that needs to be verified is modeled in the fomal specification/verification

system, Prototype Verification System (PVS). The properties that should be exhibited by

the software are stated as conjectures in the model. PVS proof checker consists of a

number of proof commands that can be used to prove the conjectures. The proof

commands applied in order to prove the conjecture can be built into a proof tree. Based on

the proof tree we generate test templates corresponding to the conjecture (or the property).

In the case we fail to prove a conjecture, we will generate test templates corresponding to

the proof goals that we could not prove. Inability to prove a conjecture based on the model

does not necessarily mean that the actual implementation has some error. It could be

GeneratingTestTemplatesviaAutomated Theorem Proving 63

because of the inconsistencies between the model and the implementation or because of the

insufficient information in the model (i.e., in the case of partial specification / verification).

So we generate test templates corresponding to the cases for which the model fails to

exhibit the specified property. Then, we can test the actual implementation for these cases

to sec whether the actual implementation also has the error that has been identified in the

model. If so, we correct both the implementation and the model and try to prove all the

properties based on the corrected model. Otherwise, we correct the model to rectify the

problem.

If wc are successful in proving a conjecture, then we derive test templates corresponding to

each of the leaves of the proof tree. However, problems arise in devising a set of rules for

generating test cases, since there is no unique way to prove a property. Different set of

proof commands (or proof strategies) can be used to prove the same conjecture in different

ways. The proof tree and hence the generated test templates vary according to the set of

proof commands used to prove the property. So we proposed a set of heuristics that aid in

generating test templates for valid properties.

Wc also claimed that proving a conjecture successfully does not imply that the

implementation or the model is correct. It only means that the stated conjecture is true with

respect to the model. In the case where the requirements specification of a problem does

not have enough details, the implementation has to make certain reasonable assumptions.

To this end, we demonstrated that errors (with respect to the assumptions made) might

GenenltingTestTemplatesviaAutomatedTheoremProving 64

exist in themodel (or in the implementation)eventhoughwecouldprove theconjectures.

We exemplified the approachto finding theseerrorsduring the processof test template

generation.

We also presenteda strategyfor organizing the test templatesinto the Test Template

Hierarchy (TTH), which will be useful in identifying test templateswith a specific

property."I-'FH is especially useful in the case of complex problems where the number of

test templates generated could easily become unmanageable. Finally, we discussed the

significance of our approach to testing software with a practical example.

The most interesting area for future work would be the development of a tool based on our

approach. The tool should automatically parse the generated proof for every conjecture and

shall derive the test templates corresponding to them. The process of organizing the test

templates into a TTH can also be automated. The tool should also allow the user to select

test templates with a specific property. The user can then test the actual implementation for

a set of selected test cases based on the test templates.

It will also be interesting to study how each of the proof commands provided by the PVS

proof checker affect the proof tree. This will help improving the set of heuristics provided

in section 4.3. It will also form the basis for automating the test template generation and

building the tool described earlier.

Generating Test Templates via Automated Theorem Proviqg 65

References

Ill O.J. Dahl, E. W. Dijkstra, and CA.R. Hoare, Structrured Programming, APIC Studies

in Data Processing. no. 8 Academic Press, 1972.

[2] Phi/Stocks and David Carrington, "A Framework For Specification-Based Testing",

IEEE Trans. on Software Eng., voi. 22, no. 11, pp. 777-793, Nov. 1996.

[3] Richard L. Ford and Lawrence M. Smith, "Specification-Based Event-Trace Testing",

http.'//www, opengrotq_, org/wwww/formal-methods.

/41 Merlin Hughes and David Stotts, "Daistish: Systematic Algebraic Testing for O0

Programs in the Presence of Side-effects", ISSTA '96, pp. 53-61.

[5] Bruno Dutertre and Victoria Stravridou, "Formal Requirements Analysis of an

Avionics Contlvl System", IEEE Trans. on Software Eng., vol. 23, no. 5, pp. 267-278,

May 1997.

[6] Glenford J. Myers, "The Art of Software Testing", John Wiley & Sons, 1979.

Generating Test Templates via Automated Theorem Proving 66

[7] Mukesh ShTghal and Niranjan G. Shivaratri, Advanced Operating Systems, McGraw-

Hill, 1994.

[81 Judy CIw_; Sam Owre, John Rushby, Namrajan Shankal; and Mandyam Srivas, "A

Tutorial hTtrodttction to PVS", http://www.csl.sri, cont/pvs/exan_ples/wift-tutoriai/wift-

tutoriaLhtml.

[9] Rici_3' Butler, "An Elementar), Tutorial on Formal Specification and Verification

Using PVS ", http ://atb-www. iarc.nasa.gov/ftp/larc/PVS-tutorial/.

[l O]John Rushby and David W.J. Stringer-Calvert, "A Less Elementary Tutorial for the

PVS Specification and Verification System ",

http://www, csl.sri, conl/p vs/examples/elemenmry-tutorialA'sl-95-10, html.

[11/Sam Owre and John Rushby, "FME '96 Tutorial: An hTtroduction to Some Advanced

Capabilities of PVS", http.'//_'w, csl.sri, conu'pvs/examples/fme96/fine96-tutorial, html

[121Sam Owre, "Overview of the PVS Verification System",

http://www, csl.sri, com/pvs/overview, html

[13] N. Shankar, S. Owre and J. M. Rushby, "The PVS Proof Checker: A reference

mamtal", http://www, csl.sri, com/reports/postscript/pw'-prover.ps.gz

Generating Test Templates via Automated Theorem Proving 67

Appendix A: PVS Primer

Prototype Verification System (PVS) is a specification and verification system developed

by SRI International. It consists of a specification language integrated with support tools

and a theorem prover. PVS has a sophisticated type system containing predicate subtypes,

dependent subtypes and abstract datatypes such as lists and trees. The standard PVS types

include numbers (integers, reals, naturals, etc.) records, tuples, arrays, functions, sets,

sequences, lists, and trees, etc. PVS has a very strong type checking system that will

automatically generate proof obligations whenever there is some ambiguity. PVS

specifications are organized into parametrized theories that may contain assumptions,

definitions, axioms and theorems. PVS expressions provide the usual arithmetic, logical

operators and quantifiers. Name overloading is allowed in PVS. An extensive prelude of

built-in theories provides numerous useful definitions and lemmas.

PVS has a powerful interactive theorem prover / proof checker. The PVS theorem prover

provides a collection of powerful primitive inference procedures that are applied

interactively under user guidance. The primitive inferences include propositional and

quantifier rules, induction, rewriting, and decision procedures for linear arithmetic. User

defined procedures can combine the primitive inferences to yield higher-level proof

strategies. Proofs yield scripts that can be edited, attached to additional formulas, and

Generating Test Templates via Automated Theorem Proving 68

rerun. This allows many similar theorems to be proved efficiently. The application of a

procedure can either generate further subgoals or prove a subgoal. PVS's automation

suffices to prove many straightforward results automatically.

Numerous tutorials, documents and research papers are available on PVS. For more

information on PVS please refer to [8]-[13].

Generating Test Templates via Automated Theorem Proving 69

Appendix B: Modified Triangle Problem Specification

triangle6 : THEORY
BEGIN

x, y, z: VAR int

char_type: TYPE = {x:nat Ix < 256}
Return_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV_ARG,
ERRNOT A TRIANGLE, Scalene, Isosceles, Equilateral, Error}

MAXLEN : posnat;
lndcx_type: TYPE = {n:natl n < MAXLEN}

Character_Array type: TYPE = ARRAY [Index_type --> char_type]

Integer_Array type: TYPE = ARRAY [Index_type --> int]
valid, found_sign : VAR boolean

a : VAR Character_Array_type
edges : VAR Integer._Array_type

v,n,sign : VAR int
inputlen : VAR nat
current, index: VAR Index_type

NullCharArray(i: Index_type): char type = 10

NulllutArray(i: Index_type): iut = 0

isdigit?(c: ch,'u_type): boolean = IF c > 47 AND c < 58 THEN True ELSE False ENDIF

get_digit(c: char type): int = c - 48
issign?(c: dmr_type): boolean = IF c = 43 OR c = 45 THEN True ELSE False ENDIF

get_sign(c: dl,'ur_type): int = IF c = 43 THEN 1 ELSIF c = 45 THEN -I ELSE 0 ENDIF

isspace?(c: dmr type): boolean = IF c = 32 THEN True ELSE False ENDIF
isncwline?(c: char_type): boolean = IF c = 10 THEN True ELSE False ENDIF

Triangle(x, y, z): Return_type =
IF ((x + y) > z) AND ((y + z) > x) AND ((z + x) > y) AND (x > 0) AND (y > 0) AND (z >
0) THEN

IF x = y AND y = z THEN Equilateral
ELSIF ((x = y) AND (y/= z)) OR

((y = z) AND (x/= z)) OR
((x = z) AND (x/= y)) THEN Isosceles

ELSIF x/= y AND y/= z AND z/= x THEN Scalene
ELSE Error

ENDIF

ERR_NOTA_TRIANGLEELSE
ENDIF

GeneratiugTestTemplates via Automated Theorem Proving 70

Parse_Input(a, index, n, found_sign, valid, edges, sign, inputlen): RECURSIVE Return_type =
IF index = inputlen THEN

IF ((11= 3) AND valid = False) OR ((ii = 2) AND valid = True) THEN

Triangle(edges(0), edges(l), edges(2))
ELSIF ((n < 3) AND valid = False) THEN ERR_FEW_ARGS
ELSE ERR_MORE_ARGS
ENDIF

ELSE

ENDIF

IF valid = true THEN

IF isspace?(a(indcx)) THEN % if space then
Parse_Input(a, index+l, n+ 1, F,'dse, false,

edges WITH [(n) := edgcs(n)*sign], 1, inputlen

ELSIF isdigit?(a(index)) THEN
Parse_Input(a, index+ I, n, found_sign, false, edges WITH [(n) :=

(edges(n)* 10)+ get_digit(a(index))], sign, inputlen)
ELSE ERR_INV_ARG
ENDIF

ELSE

IF isspace?(a(index)) AND found_sign = False THEN % if space then
Parse_Input(a, index+l, n, False, false, edges, sign, inputlen)

ELSIF issign?(a(indcx)) AND found_sign = False THEN % if +, - then
Parse_Input(a, index+l, n, True, false, edges,

get_sign(a(index)), inputlcn)
ELSIF isdigit?(a(index)) THEN

Parse_Input(a, index+l, n, found_sign, true, edges WITH [(n) :=

(edges(n)*10)+get_digit(a(index))], sign, inputlen)
ELSE ERR_INV_ARG

ENDIF
ENDIF

MEASURE (LAMBDA a, index, n, found_sign, valid, edges, sign, inputlen: inputlen - index);

%proved;
%Parse_Input conjecture6; i/p string GENERIC! case 'index = inputlen - 1"

parse_conj6: CONJECTURE Parse_Input(a, inputlen - 1, n, found_sign, valid,
edges, sign, inputlen)/= Error

END tri,'mgle6

GeneratingTestTemplatesviaAutomatedTheoremProving 71

Appendix C: Complete Triangle Problem Specification

Corrected PVS specification of the modified 'triangle' example and the test templates

tri,'mglc8 : THEORY
BEGIN

x, y, z: VAR int

char_type: TYPE = {x:nat I x < 256}

%Triangle_type: TYPE = {ERR_NOT A TRIANGLE, Scalene, Isosceles, Equilateral, Error}
%Validatc_error_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV_ARG,
CORRECT}

Return_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV ARG,

ERR_NOT A TRIANGLE, Scalene, Isosceles, Equilateral, Error}
MAXLEN : posnat;

Index_type: TYPE = {n:natl n < MAXLEN}

Charactcr_Array_type: TYPE = ARRAY [Index_type --> char_type]
Integer Array_type: TYPE = ARRAY [Index_type --> int]
valid, found_sign : VAR boolean

a : VAR Character_Arraytype
edges : VAR Integer Array_type
v,n,sign : VAR int
inputleu : VAR nat

current, index: VAR Index_type

NullCharArray(i: Index_type): char_type = 10
NulllntArray(i: Index_type): int = 0

%Mtxleling tile input.

%% This mcxlel works under file following assumptions:

%% 1. All the values ,are seperated by one or more spaces.
%% 2. An integer c,'m be optionally (immediately) preceded by a sign ('+' or '-')
%% 3. Any character other than ('0'-'9', '+', '-') will result in an error.

%% 4. The input line will be terminated by a NL dmracter.

%lemmal: LEMMA FORALL (x,y: char_type): char(x) = char(y) IFF x = y

isdigit?(c: char_typc): boolean = IF c > 47 AND c < 58 THEN True ELSE False ENDIF
get_digit(c: char_type): int = c - 48

GeneratingTestTemplates via Automated Theorem Proving 72

issign?(c: char_type): boolean = IF c = 43 OR c = 45 THEN True ELSE False ENDIF

get_sign(c: char_type): int = IF c = 43 THEN 1 ELSIF c = 45 THEN -1 ELSE 0 ENDIF
isspace?(c: ch,'u-_type): boolean = IF c = 32 THEN True ELSE False ENDIF

isnewlinc?(c: ch,'tr_typc): boolean = IF c = 10 THEN True ELSE False ENDIF

Triangle(x, y, z): Return_type =

IF ((x + y) > z) AND ((y + z) > x) AND ((z + x) > y) THEN

IF x = y AND y = z THEN Equilateral
ELSIF ((x = y) AND (y/= z)) OR

((y = z) AND (x/= z)) OR

((x = z) AND (x/= y)) THEN Isosceles
ELSIF x/= y AND y/= z AND z/= x THEN Scalene
ELSE Error
ENDIF

ELSE ERR_NOT A TRIANGLE
ENDIF

Parse_Input(a, index, n, found_sign, valid, edges, sign, inputlen): RECURSIVE Returu_type =
IF index = inputlen THEN %% index > MAXLEN??

IF ((n = 3) AND valid = False) OR ((n = 2) AND valid = True) THEN

Triangle(edges(0), edges(l), edges(2))
ELSIF ((n < 3) AND valid = False) OR (n < 2) THEN ERR_FEW_ARGS
ELSE ERR_MORE_ARGS
ENDIF

ELSE

IF valid = true THEN

IF isspace?(a(index)) THEN % if space fllen

Parse_Input(a, index+l, n+l, False, false,

edges WITH [(n) := edges(n)*sign], 1, inputlcn)
ELSIF isdigit?(a(iudex)) THEN

IF isnewline?(a(index+l)) THEN

Parse_Input(a, index+ 1, n+ 1, found_sign, false, edges
WITH [(n)

:= ((edges(n)* 10)+get_digit(a(index))) *
sign], sign,

inpuflen)
ELSE

Parse_Input(a, index+ 1, n, found_sign, false, edges
WITH [(n) :=

(edges(n)* 10)+get_digit(a(index))], sign,
inpuflen)

ENDIF

ELSE ERR_INV_ARG
ENDIF

ELSE

IF isspace?(a(index)) AND found_sign = False THEN % if space then

Parse_Input(a, index+l, n, False, false, edges, sign, inputlen)
ELSIF issign?(a(index)) AND found_sign = False THEN % if +, - titan

IF isdigit?(a(index+ 1)) THEN

Parse_Input(a, index+ 1, n, True, false, edges,

get_sign(a(index)), inputlen)
ELSE ERR_INV_ARG

GeneratingTest Templates via Automated Theorem Proving 73

ENDIF
ENDIF

ENDIF

ELSIF isdigit?(a(index)) THEN

IF isnewline?(a(index+ 1)) THEN

Parse_Input(a, index+ I, n+l, found_sign, true,
edges WITH [(n) :=

((edges(n)* 10)+get_digit(a(index)))*
sign],

sign, inputlen)
ELSE

P_trse_Input(a, index+ 1, n, found_sign, true,
edges WITH [(n) :=

(edges(n)* 10)+gct_digit(a(index))],
sign, inpuflen)

ENDIF

ELSE ERR_INV_ARG
ENDIF

/= Error

MEASURE (LAMBDA a, index, n, found_sign, valid, edges, sign, inputlen: inputlen - index);

parse_conj 1: CONJECTURE Parse Input(a, inputlen - 1, n, found_sign, valid, edges, sign, inputlen)

END tri,'mgle8

The proof tree for the conjccture "parse_coni 1" of this model will be very similar to Figure

7. We can generate test templates from the proof tree exactly the same way we generated

test templates in the section 5.2.2. Here we present the final test templates

TI: (e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[slD{D}B{B}[s]D{D}B{B}[sID{D}BXn"

T2:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}[s]D{D}B{B}[sID{D}B_n"

GeneratingTestTemplatesviaAutomatedTheoremProving 74

T3: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}IsID{D}B{B}[sID{D}B_a"

T4:(e0 = e2) ^ (ell I= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}IslD{D}B{B}[s]D{D}BW'

T5:(e0/= el) ^ (el/= e2) ^ (e2/= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

T6:(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

^ not((e0/= el) ^ (el I= e2) ^ (e2 I= e0)) ^ not((e0 = el) ^ (el/= e2))

^ not((el = e2) ^ (e0 I= e2)) ^ not((e0 = e2) ^ (e0 I= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

T7.a: not(c0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B_n"

T7.b: (e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}[s]D{D}B{B}[slD{D}BW'

T7.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IsID{D}B{B}IsID{D}B{B}[sID{D}Bha"

T7.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}Is]D{O}B{B}IslD{D}Bha"

Generaling Test Templates via Automated Theorem Proving 75

T7.e:(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "(B}Is]D{D}B{B}IslD{D}B{B}IslO{D}BW'

T7.f: not(e0 + el > e2) ^ (el + e2 > ell) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}Is]D{D}B{B}[slD{D}B_"

T7.g: (el) + el > e2) ^ not(el + e2 > el)) ^ (ell + e2 > el) ^

IS = "{B}IslD{D}B{B}IslD{D}B{B}IslD{D}BW'

"1"8:IS = "(nl[[s]D{Oln{_ll[slI){O}B_"

T9: IS = "{BI[s]D{DIB{BI[sID{D}{B{BIIsID{D}}B{B}Is]D{D}BXn"

T10:(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[siD{D}B{B}Is]D{D}B{B}[sID{D}_a"

TII: (e0 = el) ^ (el/= e2) ^ (tO + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}li{B}[slD{D}B{B}[s]D{D}_a"

TI2: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{IHIslD{D}B{B}Is]D{D}B{B}[s]D{D}W'

TI3:(e0 = e2) ^ (e0/= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IsID{D}B{B}Is]D{D}B{B}tsID{D}Xn"

Generating Test Templates via Automated Theorem Proving 76

T14:(e0/= el) ^ (el/= e2) ^ (e2/= el)) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}_n"

TI5:(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

^ not((e0 I= el) ^ (el I= e2) ^ (e2 I= e0)) ^ not((e0 = el) ^ (el/= e2))

^ not((el = e2) ^ (e0/= e2)) ^ not((e0 = e2) ^ (e0/= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}_n"

T16.a: not(e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}[s]D{D}B{B}[s]D{D}Xn"

Tl6.b: (e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}[s]DiD}B{B}Is]D{D}Xn"

T16.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}Is]D{D}B{B}[sID{D}Xn"

Tl6.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

ms = "{BIIsID{D}B{B}IsID{D}B{B}[s]D{D}Xn"

T16.e: (e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{ll}lsID{D}B{B}[s]D{D}B{B}[sID{D}_n"

GeneratingTestTemplatesviaAutomated Theorem Proving 77

T16.f: not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}_a"

Tl6.g: (e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}[s]D{D}B{B}Is]D{D}_a"

T17: IS = "{B}[[sID{D}B{B}][slD{D}Xn"

TI8: IS = "{B}ts]D{D}B{B}[s]D{D}{B{B}[s]D{D}}B{B}[s]D{D}Xn"

T19:(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{DIB{B}[s]DiD}B{B}[s]DiD}B{B}Xn"

T20:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[slD{D}B{B}[s]D{D} B{B}Xn"

T21: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}Is]D{D}B{B}Is]D{D} B{B}Xn"

T22:(e0 = e2) ^ (e0/= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (eO + e2 > el) ^

IS = "{{_}lslD{D}B{B}Is]D{D}B{B}[slD{D}B{B}_n"

"I'23:(e0/= el) ^ (el/= e2) ^ (e2/= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[slD{D} B{B}MI"

Generating Test Templates via Automated Theorem Proving 78

T24:(e0 + el > e2) ^ (el + e2 > ell) ^ (e0 + e2 > el)

^ not((e0 I= el) ^ (el/= e2) ^ (e2 I= e0)) ^ not((e0 = el) ^ (el I= e2))

^ not((el = e2) ^ (e0 I= e2)) ^ not((e0 --- e2) ^ (e0/= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D} B{B}_a"

T25.a: not(e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{IH[s]D{D}B{B}[s]D{D}B{B}[slD{D}B(B}_a"

T25.b: (ell + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{IHIs]D{D}B{B}IslD{D}B{B}IslD{D} B{B}_a"

T25.e: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[s]D{D}B{B}Is]D{D} B{B}_n"

T25.d: not(e0 + el > e2) ^ not(el + e2 > el}) ^ (e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}Is]D{D}B{B}Is]D{D} B{B}Xn"

T25.e: (e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

lS = "{B}IslD{D)B{B}[slD{D}B{B}[siD{D} B{n}ha"

T25.f: not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[slD{D}B{B}[s]D{D} B{B}_n"

Generating Test Templates via Automated Theorem Proving 79

T25.g:(e0 + el > e2) ^ not(el + e2 > e0) ^ (ell + e2 > el) ^

IS = "{B}islD{D}B{B}[s]D{D}B{B}[slD{D} II{B}W'

T26: IS = "{B}IIsID{D}B{B}IIs]D{D} B{B}ha"

T27: IS = "{BIIsID{D}B{BIIsID{DI{B{B}[sID{D}}B{B}[s]D{D} B{B)_"

T28:(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}Is]D{D}II{B}[slDn"

T29:(e0 = el) ^ (el I= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[slD{D}B{B}[slD{D}B{B}[s]D_n"

T30: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IsID{D}BiB}IsID{D}B{B}[s]D_n"

T31:(e0 = e2) ^ (e0/= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[sID{D}B{B}[slDW'

T32: (ell I= el) ^ (el I= e2) ^ (e2 I= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]Dha"

T33:(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

^ not((e0/= el) ^ (el/= e2) ^ (e2/= e0)) ^ not((e0 = el) ^ (el/= e2))

^ not((el = e2) ^ (e0 I= e2)) ^ not((e0 = e2) ^ (e0/= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}lslD{D}B{B}[slD{D}B{B}IslDha"

Generating Test Templates via Automated Theorem Proving 8O

T34.a: not(e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}Is]D{D}B{B}[s]DXn"

T34.b: (e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}Is]D{D}B{B}Is]DXn"

T34.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B)[s]D{D}B{B}[s]D_n"

T34.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}Is]DXn"

T34.e: (e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]DXn"

T34.f: not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[slD{D}B{B}[s]D{D}B{B}[slDXn"

T34.g: (e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "(B}[slD{D}B{B}[s]D{D}B{B)[s]D_n"

T35: IS = "{B}IIsID{D}B{B}IIsIDXn"

T36: IS = "{B}Is]D{D}B{B}Is]D{D}{B{B}[sID{D}}B{B}[s]DXn"

GeneratingTestTemplatesviaAutomatedTheoremProving 81

T37:(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) A

IS = "{B}[sID{D}B{B}tsID{D}B{B}[sID{D}B{B}+Ln"

T38:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) A

IS = "{B}tsID{D}B{B}[s]D{D}B{B}[slD{O}B{B}+kn"

T39: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) A (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}IslD{D}B{B}[slD{D}B{B}+_n"

T40:(e0 = e2) ^ (e0/= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}Is]D{D}B{B}ts]D{D}B{B}+ha"

T4h (e0 I= el) ^ (el I= e2) ^ (e2 I= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[slD{D}B{B}[sID{D}B{B}[slD{D}B{B}+W'

T42:(e0 + el > e2) ^ (el + e2 > e0) A (e0 + e2 > el)

^ not((e0 I= el) ^ (el I= e2) ^ (e2 I= e0)) ^ not((e0 = el) ^ (el I= e2))

^ not((el = e2) ^ (e0 I= e2)) ^ not((e0 = e2) ^ (e0 I= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+Xn"

T43.a: not(e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IsID{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+W'

Generating Test Templates via Automated Theorem Proving 82

T43.b: (e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+_"

T43.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}Is]D{D}B{B}+_n"

T43.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[slD{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+_n"

T43.e: (e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+_n"

T43.f." not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}tslD{D}B{B}[slD(D}B{B}+_n"

T43.g: (e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}Is]D{D}B{B}is]D{D}B{B}[s]D{D}B{B}+_a"

T44: IS = "{B}[[s]D{D}B{B}]IsID{D}B{B}+_n"

T45: IS = "{B}[sID{D}B{B}tsID{D}(B{B}[sID{D}}B{B}[slD{D}B{B}+Xn"

T46:(e0 = el) ^ (el = e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[slD{D}B{B}Is]D{D}B{B}-_n"

Generating Test Templates via Automated Theorem Proving 83

T47:(e0 = el) ^ (el/= e2) ^ (e0 + el > e2) ^ (el +e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}-_n"

T48: (el = e2) ^ (e0/= e2) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}Is]D{D}B{B}[s]D{D}B{B}-_n"

T49:(e0 = e2) ^ (e0 I= el) ^ (e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}IsID{D}B{B}[sID{DIB{B}tslD{D}B{BI-kn"

T50:(e0 I= el) ^ (el I= e2) ^ (e2 I= e0) ^ (e0 + el > e2) ^ (el + e2 > e0) ^

(e0 + e2 > el) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}-_n"

T51:(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el)

^ not((e0 I= el) ^ (el I= e2) ^ (e2/= e0)) ^ not((e0 = el) ^ (el I= e2))

^ not((el = e2) ^ (e0/= e2)) ^ not((e0 = e2) ^ (e0/= el))

^ not((e0 = el) ^ (el = e2)) ^ IS = "{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}-_"

T52.a: not(e0 + el > e2) ^ not(el + e2 > e0) a not(e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[s]D{D}BiB}[s]D{D}B{B}-_"

T52.b: (e0 + el > e2) ^ not(el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}ts]D{D}B{B}Is]DID}B{B}[s]D{D}B{B}-Ma"

T52.c: not(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}IslD{D}B{B}[slD{D}B{B}[slD{D}B{B}-ha"

Generating Test Templates via Automated Theorem Proving 84

T52.d: not(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}isID{D}B{B}[s]D{D}B{B}-Ln"

T52.e:(e0 + el > e2) ^ (el + e2 > e0) ^ not(e0 + e2 > el) ^

IS = "{B}[slD{D}B{B)[s]D{D}B{B}Is]D{D}B{B}-_a"

T52.f: not(e0 + el > e2) ^ (el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[s]D{D}B{B}[slD{D}B{B}Is]D{D}B{B}-Xn"

T52.g:(e0 + el > e2) ^ not(el + e2 > e0) ^ (e0 + e2 > el) ^

IS = "{B}[sID{D}B{B}[s]D{D}B{B}[s]D{D}B{B}-Xn"

T53: IS = "{B}I[sID{D}B{B}]IslD{D}B{B}-Ma"

T54: IS = "{B}is]D{D}BIB}[s]D{D}{B{B}Is]D{D}}B{B}[s]D{D}B{B}-Xn"

